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Based on our earlier analytical results for the magnetization of magnetic fluids with respect to the mag-
netic field strength, we propose an expansion method within the framework of mean spherical approx-
imation (MSA) to obtain the coefficients of different nonlinear terms. Through a Fourier expansion of the
frequency-dependent magnetic susceptibility the harmonic coefficients corresponding to the linear and
nonlinear dynamic susceptibilities are calculated from the field expansion of magnetization. The fre-
quency dependence of the higher order susceptibilities is determined on the basis of the Debye relaxation
of magnetic dipoles. Our MSA based results are in line with the corresponding limiting case of the Debye-
Weiss theory. We mapped the range of applicability of the expansion method concerning the field
strength and frequencies. Our results show that under weak fields a 7th order expansion is sufficient
to predict the magnitudes of the susceptibility components up to the 4th harmonic relevant for magnetic
fluids.

� 2022 The Authors. Published by Elsevier B.V.
1. Introduction

One of the fundamental methods to characterize the magnetic
behavior of complex magnetic systems is to probe the dynamic
(ac) susceptibility, which is the differential response of the magne-
tization to a perturbative oscillating magnetic field. In the weak
field limit the response is linear, and the undisturbed ground state
of the magnetic system can be probed without any significant
changes induced in the magnetic structure. However, in stronger
external fields the magnetization is no longer a linear function of
the field strength, and in a sinusoidal exciting field the ac suscep-
tibility response will contain higher order harmonics due to the
nonlinearity.

The ac susceptibility (and its linear and nonlinear compo-
nents) is a very sensitive indicator for the presence of various
magnetic ordering, spontaneous magnetization [1], and phase
transitions between different magnetic states [2,3], as it shows
divergence in the vicinity of the transition temperature [4].
Moreover, the frequency dependence of the ac susceptibility
provides an insight into the relaxation processes [5] in a collec-
tion of magnetic dipoles.
The relaxation processes, and the ac susceptibility response of
complex magnetic systems are exploited in several practical
applications. For instance, the colloidal suspensions of single
domain magnetic nanoparticles carrying permanent dipole
moments (magnetic fluids, ferrofluids) dissipate power under an
external alternating magnetic field mainly through the relaxation
processes. Such systems are used as localized heat source in med-
ical hyperthermia treatments [6,7]. Furthermore, the harmonic
susceptibility response of these systems provides the basis for
three-dimensional visualization in the novel biomedical applica-
tion called magnetic particle imaging (MPI) [8]. During typical
applications the amplitude of the alternating field is large enough
to drive the system out of the region of linear response – or even
into saturation – so the characterization of the nonlinear contribu-
tion to the ac susceptibility is essential.

A great variety of theoretical approaches are available to describe
the ac susceptibility of an ensemble of magnetic nanoparticles. The
frequency dependence of Weiss’s mean-field theory can be under-
stand by the application of the Debye theory, when the magnetic
dipoles are essentially non-interacting [9]. Recently, Ivanov et al.
[10] extended the modifiedmean field theory of interacting dipoles
to describe the frequency dependence of magnetic susceptibility in
Brownian relaxationdomain. Through the time-dependentdistribu-
tion function by the help of the Fokker–Planck equation [11] the
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Fourier components of the magnetic susceptibility were also
studied.

Starting from Wertheim’s mean spherical approximation (MSA)
results [12] within the framework of density functional theory
(DFT) one of the present authors have proposed an analytical equa-
tion for the dc magnetization of monodisperse magnetic fluids
[13]. In their publication quantitative agreement was found
between DFT results and corresponding canonical Monte Carlo
(MC) simulation data. Later this theoretical approach was extended
to the description of the magnetization of multi-component sys-
tems [14]. As a natural expansion of the multicomponent MSA
magnetization to polydisperse systems, in [15] we proposed an
equation for the magnetization of polydisperse magnetic fluids.
Translated into the analogous electric language on the basis of
our theory an implicit analytical equation for the electric field
dependence of the polarization was obtained [16]. On the basis
of the third-order field strength expansion of polarization we
deduced a formula for the nonlinear dielectric permittivity of dipo-
lar fluids. Moreover, we compared our theoretical findings with MC
simulation and experimental data, and reasonable agreements
were found.

Expanding along the line of our earlier works, the objective here
is to calculate the higher order terms of magnetic field power
expansion of magnetization in case of magnetic fluids. Starting
from these results the frequency components of nonlinear dynamic
susceptibility are predicted within the framework of MSA using the
well known Debye approximation [17]. The numerical results will
be compared with the Langevin and Debye-Weiss (DW) limiting
cases.
2. Theory

In the following a monodisperse magnetic fluid is described by
the dipolar hard sphere fluid model, where the particles are char-
acterized by the diameter r, and magnetic dipole moment l. The
number density of the macroscopic system is q ¼ N=V with the
volume of the system V and number of dipolar spheres N. A highly
elongated cylindrical shaped sample of magnetic fluid is consid-
ered to ensure the absence of demagnetizing field.

2.1. Magnetization and susceptibility in the framework of MSA

The dependence of the magnetization M of a magnetic fluid on
an external magnetic field H is given by an implicit equation [13]:

M ¼ lqL lH
kBT

þ 3M
ð1� qð�nÞÞ

lq

� �
; ð1Þ

where LðxÞ ¼ cothðxÞ � 1=x is the Langevin function, T is the ther-
modynamic temperature, kB is the Boltzmann constant, and n is
the implicit solution of the corresponding MSA equation

4pvL ¼ qð2nÞ � qð�nÞ : ð2Þ
In Eqs. (1) and (2) the function qðxÞ is the reduced inverse com-
pressibility function of hard spheres within the Percus–Yevick
approximation:

qðxÞ ¼ ð1þ 2xÞ2
ð1� xÞ4

: ð3Þ

According to Eq. (1) the zero-field magnetic susceptibility of the
system is

v0 ¼ vL

qð�nÞ ; ð4Þ

where vL ¼ ql2=ð3kBTÞ is the Langevin susceptibility.
2

2.1.1. Limiting cases
For qð�nÞ ¼ 1 Eq. (1) gives the well known Langevin

magnetization

M ¼ lqL lH
kBT

� �
; ð5Þ

and the corresponding magnetic susceptibility is

v0 ¼ vL : ð6Þ
For qð�nÞ ¼ 1� ð4p=3ÞvL Eq. (1) gives the magnetization in the
mean field approximation

M ¼ lqL l
kBT

ðH þ 4pM=3Þ
� �

; ð7Þ

and the corresponding magnetic susceptibility is

v0 ¼ vL

1� 4pvL=3
: ð8Þ

The other form of this equation is expressed for the Langevin
susceptibility:

v0

4pv0=3þ 1
¼ vL : ð9Þ

In the literature both Eq. (8) and Eq. (9) are called Debye-Weiss
equation.

2.2. Field strength expansion of MSA magnetization

In order to obtain the magnetic field strength power expansion
of implicit magnetization function (see Eq. (1)) the method
described in [16] can be applied. The result of the 7th order expan-
sion is:

MðHÞ ¼ m0 þm1H þm2H
2 þm3H

3 þm4H
4 þm5H

5

þm6H
6 þm7H

7 þ . . . :
ð10Þ

Magnetic fluids show no spontaneous magnetization, therefore the
coefficient m0 is zero, and due to symmetry reasons the coefficients
of even order terms also vanish. The magnitude of non-zero terms is
decreased with increasing order, and their coefficients are:

m1 ¼ ql2

3kBT
1

qð�nÞ ; ð11Þ

m3 ¼ � ql4

45ðkBTÞ3
1

q4ð�nÞ ; ð12Þ

m5 ¼ � ql6

4725ðkBTÞ5
11qð�nÞ � 21

q7ð�nÞ ; ð13Þ

m7 ¼ � ql8

70875ðkBTÞ7
19q2ð�nÞ � 88qð�nÞ þ 84

q10ð�nÞ : ð14Þ
2.3. Field-dependent static susceptibility

The definition of the field-dependent static magnetic suscepti-
bility is

v ¼ @M
@H

: ð15Þ

Considering Eq. (10) we can write that

v ¼ m1 þ 3m3H
2 þ 5m5H

4 þ 7m7H
6 þ . . . ; ð16Þ

where in MSA m1 gives back Eq. (8) in zero-field approximation.
From m3 the first nonlinear term can be obtained (see [16]).
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2.4. Time-dependent susceptibility

In the following we assume that the external magnetic field is
an alternating field:

HðtÞ ¼ H0 sinðxtÞ; ð17Þ
which oscillates along the long axis of the cylindrical sample. H0 is
the amplitude of the field, x is the angular frequency, and t is the
time. The nonlinearity of the time-dependent susceptibility under
a sinusoidal field is conveniently characterized experimentally by
extracting the magnitude of the higher order harmonics, thus we
will use the following formalism. Substituting Eq. (17) into Eq.
(16), and collecting the corresponding terms according to the for-
mal Fourier series of v:

vðtÞ ¼ v0 þ v2x cosð2xtÞ þ v4x cosð4xtÞ þ v6x cosð6xtÞ þ . . . :

ð18Þ
For the coefficients of the trigonometric functions we obtain that

v0 ¼ m1 þ 3
2
m3H

2
0 þ

15
8

m5H
4
0 þ

35
16

m7H
6
0; ð19Þ

v2x ¼ 3
2
m3H

2
0 þ

5
2
m5H

4
0 þ

105
32

m7H
6
0; ð20Þ

v4x ¼ 5
8
m5H

4
0 þ

21
16

m7H
6
0; ð21Þ

v6x ¼ 7
32

m7H
6
0 : ð22Þ

As we can see, even the first coefficient v0 contains contribution
from the higher order terms of the power expansion of the magne-
tization function, but the number of terms in vnx decreases with the
harmonic number n. In Eqs. (19)–(22) the following well known
trigonometric relations are used:

sin2 x ¼ 1� cosð2xÞ
2

;

sin4 x ¼ 3� 4 cosð2xÞ þ cosð4xÞ
8

;

sin6 x ¼ 10� 15 cosð2xÞ þ 6 cosð4xÞ � cosð6xÞ
32

:

ð23Þ
Fig. 1. Spectra of the linear v̂0 (a), and the higher order nonlinear v̂2x (b) and v̂4x (c)
susceptibilities according to the MSA theory in comparison with the corresponding
Langevin and Debye-Weiss approximations under a weak field of H� ¼ 0:1
(q� ¼ 0:1;l� ¼ 1).
2.4.1. Complex susceptibility, Debye approximation
To study the dynamic magnetic properties we introduce the

complex magnetic susceptibility. Instead of Eq. (17) we prescribe
a complex exciting magnetic field as:

HðtÞ ¼ H0eixt ; ð24Þ
where i is the complex unit. In this case the magnetization response
and the susceptibility are also complex quantities. For the complex
magnetic susceptibility the following sign convention is used:

v̂ ¼ v0ðxÞ � iv00ðxÞ; ð25Þ
where v0 is the real and v00 is the imaginary part of the magnetic sus-
ceptibility. In the classical Debye approximation Eq. (9) can be
obtained from the average component of dipole moment in the
direction of the magnetic field:

l cos hh i ’ l2H
3kBT

; ð26Þ

where the Boltzmann distribution function is used for the approxi-
mate calculation of the angle average. Assuming an alternating
3

external field (see Eq. (24)) the approximate distribution function
is modified [17], and therefore the expression of the average dipole
moment in the direction of the ac field is also altered:

l cos hh i ’ l2H0

3kBT
1

ð1þ ixsÞ ; ð27Þ

where s is the microscopic relaxation time. We assume that the
relaxation of the magnetic dipoles occurs only by the Brownian
mechanism, where the dipole moment rotates with the whole par-
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ticle. According to [17] from the static equation of Debye-Weiss (Eq.
(8)) the dynamic (frequency-dependent complex expression) can be
obtained by the substitution of:

l2H
3kBT

! l2H0

3kBT
1

ð1þ ixsÞ : ð28Þ

In Debye-Weiss approximation, at zero field strength for the com-
plex susceptibility our theory gives:

v̂0

4pv̂0=3þ 1
¼ vL

ð1þ ixsÞ ; ð29Þ

which is in harmony with Eq. (9). Considering the real and imagi-
nary parts we obtain the classical Debye-Weiss expressions. We
note that this microscopic relaxation time s differs from the macro-
scopic relaxation time of Debye (see [17]). To obtain the frequency
dependence of the field-dependent terms in complex v̂, and v̂nx (n =
2, 4, 6) coefficients Eq. (28) is applied again. For simplicity, in the
following we summarize the complex m̂k (k = 1, 3, 5, 7) MSA terms
to derive the complex MSA v̂0 and v̂nx expressions by substituting
them into Eqs. (19)–(22):

m̂1 ¼ ql2

3kBT
1

qð�nÞ
1

ð1þ ixsÞ ; ð30Þ

m̂3 ¼ � ql4

45ðkBTÞ3
1

q4ð�nÞ
1

ð1þ ixsÞ2
; ð31Þ

m̂5 ¼ � ql6

4725ðkBTÞ5
11qð�nÞ � 21

q7ð�nÞ
1

ð1þ ixsÞ3
; ð32Þ

m̂7 ¼ � ql8

70875ðkBTÞ7
19q2ð�nÞ�88qð�nÞþ84

q10ð�nÞ
1

ð1þixsÞ4 : ð33Þ

The coefficients v̂nx (n = 2, 4, 6) are the nonlinear susceptibilities
and correspond to the amplitudes of the nth harmonic. In the
zero-field limit, where the response is linear the higher order sus-
ceptibilities vanish, and only the coefficient v̂0 is present, which
corresponds to the linear ac susceptibility. In case of typical mag-
netic fluids the amplitudes of the n P 6 harmonics are so small that
their accurate detection by experimental methods is difficult, so
usually those are neglected. Therefore, we will consider the har-
monic susceptibilities only up to n = 4. It is worth to mention, that
if a symmetry breaking dc bias field is superimposed on the ac field,
then the odd harmonics will appear besides the even ones.

3. Numerical results and discussion

In the following we use reduced quantities: q� ¼ qr3 is the

reduced density, l� ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3kBT

p
is the reduced dipole moment,

and H� ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=ðkBTÞ

p
is the reduced magnetic field strength.
Fig. 2. 3D representation of the complex functions of v̂0 (a), v̂2x (b), and v̂4x (c) in the freq
shows the classical Debye relaxation at xs = 1 (marked by the solid line on the real and
toward lower frequencies.

4

The numerical results were calculated for a reference system with
q� = 0.1, and l� = 1, so 4pvL � 0.415. The reduced parameters were
chosen to represent a typical dilute magnetic fluid containing
spherical magnetite particles with a magnetic core diameter of
r � 10 nm in a carrier liquid. The field amplitude, and frequency
dependence of the linear susceptibility v̂0, and the higher order
nonlinear susceptibilities (v̂2x and v̂4x) were calculated. The
results are presented as the complex functions, and the spectra
of the real and imaginary parts of the quantities v̂0 ¼ v0

0 � iv00
0

and v̂nx ¼ v0
nx � iv00

nx (n ¼ 2;4).
First, we compare the prediction of the current expansion based

MSA theory underweak fields with the corresponding Langevin and
Debye-Weiss approximations as limiting cases. As it is shown in
Fig. 1 all of the three considered theories give qualitatively similar
results at H� = 0.1. However, as the MSA and DW data show, the
interparticle interactions increase the linear – and especially the
nonlinear – susceptibilities compared to the non-interacting mag-
netic dipoles of the Langevin theory. The difference becomes larger
with the order of the harmonics n in case of the real and the imagi-
narypart aswell. Thepredictions of theMSAandDWtheories for the
effect of interactions on the magnitude of v̂2x and v̂4x are close to
each other; the agreement is reasonable inweak fields. The DW the-
ory slightly overestimates both nonlinear susceptibilities compared
to the MSA results. The difference between these two theories
widens as the order of the susceptibility is increased. It is known that
the DW theory gives accurate results, but it predicts that the linear
and nonlinear susceptibilities diverge at 4pvL ¼ 3 [9]. In case of
the chosen system vL remains well below the point of divergence,
thus the comparison with the DW theory is reasonable.

The frequency-dependent complex function of v̂0; v̂2x, and v̂4x

together with the projected spectra of the real and imaginary parts
are shown in Fig. 2. The following features can be pointed out. The
linear susceptibility v̂0 is well described by the Debye relaxation,
and displays a relaxation peak of v00

0 at xs = 1. A slower relaxation
of the higher order susceptibilities is observed as the global
extrema of the imaginary parts occur at xs < 1 frequencies. The
shift of relaxation into the lower frequencies increases with the
order of the harmonics, and simultaneously the spectra of the
imaginary part becomes asymmetric with a broadened lower fre-
quency side. The real part of v̂2x and v̂4x exhibit a local extremum
nearxs = 1. The results are in qualitative agreement with the spec-
tra derived by Kuznetsov and Pshenichnikov [18] for the first three
components of the nonlinear susceptibilities by a theoretical
approach based on the Fokker–Planck equation.
3.1. Field strength dependence

Let us now examine the effect of increasing magnetic field
strength on the linear and nonlinear susceptibilities. The magnetic
uency range ofxs ¼ 10�3 � 103 under weak fields (H� ¼ 0:1). The linear component
imaginary planes), while the relaxation of the higher order susceptibilities is shifted
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field strength dependence of the spectra of v̂0; v̂2x, and v̂4x accord-
ing to the expansion based MSA theory is shown in Fig. 3. The
reduced magnetic field strength was increased up to H� = 2. A lim-
itation of the current theory can be seen at larger field strengths:
Fig. 3. The effect of increasing magnetic field strength (up to H� ¼ 2) on the spectra of
according to the present MSA theory (q� ¼ 0:1;l� ¼ 1).

5

above H� = 1.6 unphysical features begin to appear in the spectra
of v0

0 and v00
0 in the form of local maxima. This is due to the trun-

cated nature of the expansion series of the magnetization function
(Eq. 10). The limitation can be overcome by continuing the current
the real and imaginary parts of v̂0 (a, b), v̂2x (c, d), and v̂4x (e, f) susceptibilities
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expansion beyond the 7th order, which would incorporate further
terms into Eqs. (19)–(21) of the susceptibilities, and enhance their
convergence.

The spectra of v̂0; v̂2x, and v̂4x around the relaxation in the field
strength range below H� 6 1, where our MSA theory gives reliable
results is shown in Fig. 4. In case of v̂0, both real and imaginary
Fig. 4. With increasing magnetic field strength (in the range of H� ¼ 0:1� 1:0,
marked by the arrows) v0

0 and v00
0 (a) decreases, while the contribution of the

nonlinear components v̂2x (b), and v̂4x (c) become larger. Simultaneously, the
relaxation peaks shift towards higher frequencies.

6

parts become smaller as H� is increased. Simultaneously, the relax-
ation peak of v00

0 shifts towards higher frequencies in agreement
with other theoretical [19,20] and experimental results [21]. On
the other hand, the magnitude of the real and imaginary parts of
the nonlinear susceptibilities increase significantly with the
increase of H�. This behavior results from the enlarged nonlinearity
in the magnetization of the system as it is driven towards satura-
tion by the increasing field strength. The relaxation of higher order
components behaves similarly to the case of v̂0: the peak of v00

2x
shifts slightly, while the peak of v00

4x to a grater extent into the
higher frequency region with larger H�.

To emphasize the relative contribution of the linear and higher
order susceptibilities the magnetic field dependence of their abso-
lute values is shown in Fig. 5. In the zero-field limit of H� ! 0 v̂0j j
approaches the initial dynamic susceptibility, while both higher
order susceptibilities vanish. As H� grows the component v̂0j j
decreases, while v̂2xj j and v̂4xj j show an increasing trend according
to a power law in the investigated range of H�. Some of our prelim-
inary experimental data for the magnetic field dependence of the
magnitude of v̂2x and v̂4x in magnetic fluids show the same behav-
ior [22]. Similar findings were described in [18], but they showed
that within the Fokker–Planck approach the power law increase
in weak fields turns into a hyperbolic decrease at large field
strength, when the magnetization approaches saturation. The field
strength range required to reach the vicinity of saturation is not
accessible by the current (7th order) expansion of the MSA
approach, as it was mentioned earlier.

If we consider the magnitude of the nonlinear susceptibilities, it
is clear that the overall nonlinear contribution is dominated by the
magnitude of the second harmonics. The v̂4x component is an
order of magnitude smaller than v̂2x, which is in line with the pre-
dictions of other theories [23]. Within the framework of the MSA
theory the nonlinearity is the result of the normal saturation of
the magnetization only, thus the real part of v̂2x has a negative
sign (see Fig. 4), and with that the overall nonlinear contribution
is also negative. This is in agreement with experimental data for
magnetic fluids in weak fields [24,25]. Nonlinear susceptibility
with a positive sign was obtained by Wang and Huang [23] using
a perturbation expansion method. They attributed the positive
effect to the anomalous saturation, which stems from the shifting
of equilibrium between the structures with different dipole
moments (single particles and different sized particle chains).
Structural changes as large, that the anomalous saturation over-
comes the negative effect of the normal saturation can be expected
only at large field strength. However, the present MSA theory can
not describe the anomalous saturation, and the nonlinear contribu-
tion will remain negative even under a strong field. We note that
the positive contribution of the anomalous saturation could be
described within the framework of MSA, if the polarizabilities of
the dipolar spheres are included, but such an attempt has not been
made yet.
Convergence of the expanded MSA model

As Eqs. (19)–(21) show the linear and nonlinear susceptibilities
are composed of a sum of terms containing the coefficients mnþ1,
which stem from the power expansion of the magnetization func-
tion. This is a frequently used formalism, and in the domain of
weak fields it is generally assumed that vnx is determined mostly
by the first component of its series [26]. So, if H0 is small, then
v0 contains only the linear static susceptibility m1;v2x is propor-
tional to m3, and v4x is connected mainly to m5. In the following,
we will examine the limits of this assumption within the MSA
theory.



Fig. 5. Magnetic field strength dependence of the magnitude of the first three susceptibility component (v̂0; v̂2x , and v̂4x) at different frequencies in the weak field range
(q� ¼ 0:1;l� ¼ 1).

Barnabás Horváth, Péter Decsi and István Szalai Journal of Molecular Liquids 359 (2022) 119279
In Fig. 6 the calculated spectra of v̂0; v̂2x, and v̂4x are shown,
when these are gradually approximated by their expanding series
up to the term containing m̂7. The spectra are given for H� = 0.1,
and at a larger, H� = 1 field strength. At H� = 0.1 the contributions
of the higher order terms in the linear and nonlinear susceptibili-
ties are so small, that even the first term gives an excellent approx-
imation. This is confirmed by the overlapping curves in Fig. 6a-c. At
larger field strength the situation changes, because the relative
contributions of the higher order terms increase rapidly with H�,
and even with the harmonic number n. In this case considering
only the first term becomes an inadequate approximation (see
Fig. 6. Approximation of the linear and nonlinear susceptibilities by the sum of
increasing number of terms (Tmk

; k ¼ 1;3;5;7) in their expanding series (Eqs. (19)–
(21)) under a weak field of H� = 0.1 (a, b, c) and at larger field strength H� = 1 (d, e, f).
In weak fields even the first Tm1 term is an adequate approximation, but at larger
field strengths the convergence deteriorates with increasing harmonic number.

7

Fig. 6d-f). The convergence is satisfactory for the first three suscep-
tibility components (especially in the case of v̂0), but deteriorates
with increasing n, as the number of terms in the series of the
higher order susceptibilities decreases. E.g. v̂4x has only two terms,
and using just the first one will cause large error. The number of
terms in the higher order susceptibilities, and with that the accu-
racy of the convergence can be increased by continuing the power
expansion of the magnetization function beyond the 7th order, as
it was pointed out earlier.

4. Conclusions

We have given a theoretical description of the nonlinear
dynamic susceptibility response of interacting magnetic dipoles
within the framework of MSA theory. A power expansion based
approach was used to calculate the frequency and magnetic field
strength dependence of the linear and higher order harmonic sus-
ceptibilities. From the obtained results the following conclusions
have been drawn:

� An advantage of the current theoretical approach with the
expansion based treatment of the ac susceptibility is that sim-
ple, analytical equations can be derived for the linear and non-
linear components, which directly correspond to the
experimentally detectable magnitude of the higher harmonic
susceptibilities.

� The predictions of MSA for the frequency dependence of the
first three ac susceptibility components agree reasonably with
the well tested Debye-Weiss limiting case under weak fields,
however the difference between the two theories increases
with the order of the harmonics. We found qualitative agree-
ment for the spectra of v̂0; v̂2x, and v̂4x with the results in
Ref. [18] derived from the more complicated solution of the
Fokker–Planck equation.

� We calculated the spectra of the susceptibility components in a
range of field strengths, and found that due to the truncated
nature of the series expansion of the magnetization function
used in the present theory, the MSA predicts unphysical fea-
tures in the spectra above H� > 1.6.

� In weak fields the 7th order expansion applied here is sufficient
to determine the susceptibility component up to the 4th har-
monic with acceptable accuracy. With longer power expansion
the applicable field strength range can be expanded, and the
accuracy of the higher order susceptibilities would be improved
further.

� We tested the convergence of the series of the first three sus-
ceptibility components, which was satisfactory even in case of
v̂4x. Our results showed that the generally accepted approxima-
tion of v̂0 and higher susceptibilities just by the first term is jus-
tified only under weak fields (H� � 0.1) for the considered dilute
magnetic fluids.
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In future works we will try to extend the applicability of the
expansion based MSA method to cover the domain of strong fields
near saturation, and extend the theory to include the case, when a
dc bias field is also applied. We also plan to test the predictions of
the theory for the dynamic susceptibility response of magnetic flu-
ids against simulations, and experimental results.
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