Nonlinear contributions to the dynamic magnetic susceptibility of magnetic fluids

Horváth Barnabás; Decsi Péter; Szalai István (2022) Nonlinear contributions to the dynamic magnetic susceptibility of magnetic fluids. Journal of Molecular Liquids, 359 (119279). pp. 1-8. ISSN 0167-7322

[thumbnail of Nonlinear contributions to the dynamic magnetic susceptibility of magnetic fluids.pdf]
Előnézet
Szöveg
Nonlinear contributions to the dynamic magnetic susceptibility of magnetic fluids.pdf - Megjelent verzió

Download (1MB) | Előnézet
Hivatalos webcím (URL): https://www.sciencedirect.com/science/article/pii/...

Abstract

Based on our earlier analytical results for the magnetization of magnetic fluids with respect to the magnetic field strength, we propose an expansion method within the framework of mean spherical approximation (MSA) to obtain the coefficients of different nonlinear terms. Through a Fourier expansion of the frequency-dependent magnetic susceptibility the harmonic coefficients corresponding to the linear and nonlinear dynamic susceptibilities are calculated from the field expansion of magnetization. The frequency dependence of the higher order susceptibilities is determined on the basis of the Debye relaxation of magnetic dipoles. Our MSA based results are in line with the corresponding limiting case of the DebyeWeiss theory. We mapped the range of applicability of the expansion method concerning the field strength and frequencies. Our results show that under weak fields a 7th order expansion is sufficient to predict the magnitudes of the susceptibility components up to the 4th harmonic relevant for magnetic fluids

Tudományterület / tudományág

02. Műszaki és technológiai tudományok

Kar

Mérnöki Kar

Tanszék

Mechatronikai Képzési és Kutatási Intézet

Intézmény

Pannon Egyetem

Mű típusa: Cikk
Kulcsszavak: mágneses folyadék, mágneses térerősség
A mű MTMT azonosítója: 32823743
DOI azonosító: https://doi.org/10.1016/j.molliq.2022.119279
Felhasználó: Judit Góczán
Dátum: 25 Máj 2023 13:02
Utolsó módosítás: 25 Máj 2023 13:04
URI: https://perepo-publikacio.uni-pannon.hu/id/eprint/1685

Actions (login required)

Tétel nézet Tétel nézet